
_ _ .:-%

._3-_ / _ _"_,

hi

SEMI-CLASSICAL THEORY OF

ELECTRONIC EXCITATION RATES

Final Report on NASA Grant-l-i211

"High Temperature Electronic Excitation and

Ionization Rates in Gases"

Submitted 5 December 1991

by C. Frederick Hansen
Professor of Physics

University of Oregon

Eugene, Oregon 97403

(NASA-CR-189496) HIGH TEMPERATURE

ELECTRONIC EXCITATION AND IONIZATION RATES

IN GASES Fina| Report (Oregon Univ.) 24 p
CSCL 20H

G3172

N92-14801

Uncl _s
O0 53219



SEMI-CLASSICAL THEORY OF

ELECTRONIC EXCITATION RATES

C. Frederick Hansen

Physics Dept., University of Oregon

Eugene, Oregon 97403

INTRODUCTION

At high temperatures, the properties of a gas are influenced

by vibrational excitation, dissociation, electronic excitation, and

ionization; all sinks of energy which absorb some of the kinetic

energy of molecular motion and change the thermodynamic and

transport properties of the gas rather strongly. Moreover, the

different modes of energy may not relax to equilibrium in the time

scale of concern, for example the dwell time of the flow about a

hypersonic vehicle. Usually, however, the collisions will
establish a Boltzmann like distribution of states within each

energy mode very quickly; only a few collisions are required to

randomize the kinetic energy states in a most probable

distribution, and to a first approximation the same is true of the

molecular vibrational states if one neglects the distortion of the

distribution that occurs due to anharmonicity in the upper

vibrational levels. Although the exchange of kinetic energy is

minimal in collisions between free electrons and heavy particles,

the electron-electron collisions quickly establish a Boltzmann

distribution of electron kinetic energy states. This state of

pseudo steady nonequilibrium is described by a gas with three

different temperatures; T, T°, and Tv. These temperatures describe

the Boltzmann distributions of heavy particle kinetic energy, of

electron kinetic energy, and of vibrational states respectively.

Experimentally, the transfer of energy between diatomic

vibrational states and free electron kinetic energy is known to be

very rapid. For example, this fact is used to establish

vibrational population inversions in the CO Electric Discharge

Supersonic Laser*. Moreover, the calculation of diatomic

vibrational excitation by electron collision has been calculated

using first principles 2"3, and the relaxation of free electron-

molecular vibration states towards equilibrium with one another is

orders of magnitude faster than the relaxation of vibrational

states by heavy particle collision'. Thus a reasonably good

approximation for high temperature gases, at least in the time

scale of concern in hypersonic flow problems, obtains when T° and

Tv are equalized'.

The relaxation of excited electronic states of atoms and

molecules toward equilibrium is not as well understood. The

assumption is often used that excited electronic energy, like
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vibrational energy, is in equilibrium with the free electron

kinetic energy. Park 6 published some estimates of rate
coefficients for electron bombardment excitation of N and O atoms,

based on the work of Lotz _, which indicate equilibration between

free electron energy and excited electronic energy of the atoms is

indeed rapid, comparable with rate coefficients for excitation of

vibrational states by electron collision. Thus the approximation
that excited electronic states are described by T. is no doubt a

reasonably good one.

However, once equilibration with electron collisions has been

achieved, these collisions no longer change the distribution;

additional energy to the vibrational and excited electronic modes

feeds in from collision with heavy particles. A portion of this

energy is in turn transmitted to free electron kinetic energy 4, and
in fact the electron-vibration and electron-electronic state energy

transfers are no doubt the principal mechanisms by which electron

kinetic energy is eventually brought into full equilibrium with the

heavy particle kinetic energy of the gas. The direct energy

exchanges that occur in electron-heavy particle collisions are

negligible in comparison.

In the case of vibrational excitation there exist some good

experiments backed by reliable theories which provide quantitative
vibrational relaxation rates "-i2, which can be used to predict the

relaxation of hypersonic flow to full equilibrium at moderately

high temperature. However, the rates for electronic excitation are
needed to complete the picture at very high temperature. As

suggested above, the equilibration between free electron kinetic

energy and the excited electronic states of heavy particles is

probably rapid. But the rate of electronic excitation by heavy

particle collisions is required for prediction of electronic energy
in the temperature range around 5000°K where normally few free
electrons exist. When the free electrons do appear, the heavy

particle excitation of electronic states is a channel that competes
with vibrational excitation as a mechanism for equilibration of

electron kinetic energy, and at higher temperatures where the

molecules disappear the heavy particle excitation of electronic

energy is probably the principal mechanism for this equilibration.

Accordingly, the purpose Of £his paper is to develop a semi-
classical theory of electron state excitation of atoms and

molecules caused by collisions with heavy particles, and to compare

the relaxation rates obtained in this process with the relaxation

achieved by free electron collisions.

ELECTRONIC STATE RELAXATION BY ELECTRON COLLISION

Let the free electron kinetic temperature be T. and the

excited electronic state distribution be described by the

temperature T'. Assume that collisions between gas particles in
excited states transfer electronic energy so readily that the



distribution becomes Boltzmann like quickly and that the relaxation

of this process can be treated as instantaneous on the time scale

of concern. Also assume that free electron collisions are the only

effective means of introducing additional excited electronic state

energy. Then the rate of change in electronic energy E* is

dE'dt nen _-11-o_ (ej-ei) kiJ _ nJn kji (i)

where n. is the number density of free electrons, nl is the number

density of atoms in state i with electronic energy el, n is the

total number density of atoms, and klj is the rate coefficient for

excitation from state i to j by free electron collision. Eq.(1)

accounts for all upward and downward transitions in electronic

state over all levels up to some maximum level J.ax-

The number densities nl are given by the temperature T*

-eJkT"

ni . gi e (2)

n Q(T')

where g_ is the degeneracy of the i _ state

electronic state partition function of the atom

Q(T')
J_

-el/kT"
- _ gi °

j-_

and Q(T*) is the

(3)

By detailed balancing at equilibrium with the

temperature T., the ratio of the rate coefficients is

kji gi e- (el-eJ)/kT_

k_j gj

electron

(4)

Thus Eq.(1) can be expressed

dE'dr nen _i_o (ej-e') -n Tokij.. 1 - -_i ,. To (5)

The deviation of electronic excitation energy per atom from

its equilibrium value at the temperature To is



AE" - E °(T e)-E.(T*) - n _i ei -_ T,- _- T'
(6)

The product of electron density n. and the relaxation time T for

the process is n. times Eq.(6) divided by Eq.(5)

net

ne AE" (7)

(dE'/dt)

Park 6 approximates the calculated values

coefficients klj with the empirical form

Te )m1_ (efel)/_.kij " Cij I0000 e-

for the rate

(8)

The values of the coefficients Clj and mi_ given in Table 2.1 of
Park's book 6 were used to calculate the n.r products given by

Eq.(7). The results for N atom relaxation are shown in Fig.(1) and

for O atom relaxation in Fig.(2). Note that the relaxation is

insensitive to the initial electronic temperature T'. The

relaxation rates are expected to decrease monotonicly as

temperature increases. For e-N collisions this expectation is

satisfied except for very low values of temperature, where the rate

coefficients given by Eq.(8) are no doubt unreliable. However for

the case of e-O collisions, the results look very strange indeed.

The relaxation rate increases at temperatures above 15000 degK and

plateaus unrealistically at still higher temperature. Probably
this is an artifact which results because so many of the excitation

rate coefficients are essentially zero in Park's table for e-O

collisions, which seems physically unlikely. Some modification of

the constants C,j not specified in Ref.(6) has been applied by Park

in Ref.(13), but that is unlikely to compensate for the missing

rate coefficients in the relaxation rate calculation. However that

may be, the density relaxation time products are very short, the

order of i0 -*_ to 10 -I" mo! sec/cc. This is even smaller than the

density relaxation times for electron collision production of

vibrational states" (where n._ is the order of i0 -Is to 10 -16 mol

sec/cc), so rapid equilibration of excited electronic states and

free electron kinetic energy can be anticipated. The principal
concern here is how these electron collision rates compare with

rates for electronic state excitation by heavy particle collisions.

ELECTRONIC STATE EXCITATION BY HEAVY PARTICLE COLLISION

The atoms or molecules in high energy collision will

assumed to experience a simple exponential repulsion potential

be

4



U - A e-R/r (9)

where A is a constant which establishes the size of the collision

potential and L is a scale factor which determines the steepness of

the potential as the distance R between the collision partners

changes. Since the major contributions to the transition

probability will occur where the potential is the steepest, long

range attractive parts of the potential can be accounted for by

increasing the collision energy of the pair by the depth of the

attractive well and adjusting A and L to duplicate the steepest

part of the potential, which is in effect traversed with the

velocity of this increased collision energy. The long range

attractive forces between molecules will be rather negligible at

high temperatures in any case. However, for the atomic collisions

a deep attractive well occurs when the electron spins of the outer

electrons of the colliding atoms happen to pair; then the higher

effective collision energies will need to be taken into account.

For the potential of Eq.(9), the solution for the

intermolecular distance as a function of time is analytic in the
case of head on collision I*.

R-R° )U . exp . sech 2 ut
E L 2L

(lO.Z)

R 1 2L in sech ( ut
To " - (1o.2)

where u is the collision velocity in center of mass coordinates, E
is the collision energy (Bu2/2), and Ro is the distance of closest

approach

R o - L In(A/E) (ii)

If one of the collision partners makes a transition from state

a to state b during the collision, the excited electron produces a

dipole which creates an electric field V at the position of the

other particle

e z cos0
V - (12)

R _

where r is the displacement of the electron charge e from its

nuclear center and 8 is the polar angle the vector r makes with the
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intermolecular distance vector R as shown on Figure 3. A small

perturbation energy (-_V 2) occurs between the particles, due to the

dipole induced in the inert collision partner (that is, the partner

not making a transition), where a is the polarizability of that

partner. This ripple perturbation added to the interaction of

Eq.(9) gives the total interaction for collision when transition

Occurs.

U = A e -R/L - _V 2 (9.1)

The small perturbation transition probability for promotion of
state a to b is

Pab - -!-I < @_IUl@a> e i°_t dt
4_2

(13)

where @o and @b are the spatially dependent parts of the wave

functions for the states a and b respectively. The time dependent

parts of the total wave function provide the circular frequency for

the transition

O_ab - (Eb-Ea) /_ (14)

The quantum average of the first term in Eg.(9.1) vanishes due

to the orthogonality of the wave functions, and the resulting

transition probability can be expressed as a product of several

dimensionless factors

Pab " ((_/a_o) (e2/ao 45o) (aolRo)6 Hab Fab)2 (13.1)

The dimensionless transition matrix element Hob is

Hab - < _)_ I(r/ao )2 c°s2O [ _a >

and the dimensionless Fourier transform is

m

eight
Fab " _)ab

dt

-.J (R/Ro) 6

(13.2)

(13.3)

POLARIZABILITY OF ATOMS AND MOLECULES

The polarizability of multielectron atoms and molecules needed

in Eq.(13.1) is a function of frequency



2 2
e 2 (_i-e_) f_

2 2 4y2to_" _ (_i-e_) _ +
(15)

where the sum extends over all optical transitions of the inert

collision partner, f, is the oscillator strength of transition i,

el is the radian frequency of transition i, and 7 is the damping

coefficient

y w

2 e2(_ab

3mc 3
(15.1)

The oscillator strengths needed in Eq.(15) are tabulated for

atoms by Weise, Smith, and Glennon _', for example.

TRANSITION MATRIX ELEMENTS

Evaluation of the transition matrix elements of Eq.(13.2)

requires knowledge of the wave functions @. and @b- Although these

functions are not known precisely for atoms in general, the upper

excited states at least are nearly hydrogen like, in which case the

Slater type screened wave functions are a fair approximation. For

the state of quantum number n

_n - Rnlm(Zr/n) _m (_'_) (16)

where R_I. is the usual hydrogenic radial wave function, YI. is the

spherical harmonic angular function, and the effective screened

charge Z is related to the observed energy En of the n t" quantum

state

z(eI (17)

Where the ground state is involved in the transition a

somewhat better approximation may be required for the ground state

wave function, such as the partial quantum number functions of

Bates and Damgaard I_. Although transition matrix elements

determined with these approximate wave functions will not be exact,

the correction factor should be the order of unity so the results

will at least provide reasonable estimates of the magnitude of the

transition probabilities and exhibit correct functional relations.
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FOURIER TRANSFORMS

The Fourier transform given by Eq.(13.3) and Eq.(10.2) is

F- co f e i_ dt

-" (i-2__LRo in sech2L)Utl 6

(18)

The subscripts a and b for the specific transition in question are

omitted for economy in notation.

Transform the variables to

ut _ 2_T, Ro- -- - , a - -- (18.1)
z 2T, ' u 2A

Then the dimensionless Fourier transform becomes

oo

F-p/
e ipz dz

(i- 1 in sech z) G
a

(19)

The denominator of the integrand in Eq.(19) has sixfold roots

at ±Zo, where

z o - i arccos(e -a) (19.1)

The integral of Eq.(19) is obtained by integrating around a

half circle in the complex plane, along the real axis from -_ to +_

and then back along the half circle at infinity in the upper plane;

this encloses the pole at +Zo. Then the integral along the real

axis is just 2_i times the residue at +Zo.

w

f e ipz dzP 1
-- (i--- in sech z) 6

a

- 2_i Res(z o) (20)

The residue is obtained by multiplying the integrand with

(Z-Zo) 6, taking the 5 _ derivative with respect to z, and then

evaluating that derivative at Zo. This is a somewhat lengthy but

straightforward process. The result is an analytic function of

collision energy which can then be integrated over a Maxwell

Boltzmann distribution of collision energies by numerical

quadrature.



Define the functions G(z) and g(z)

(z-zo) 6 ei_ z ei_Z
G(z) -

(i --I In sech z) G g_ (z)
a

(21)

Then the derivatives of G are

dG _(i_i
dz g6

G dgl_ (21.1)
g7 dz )

d2G (___2 2"6i_ dg 6 d2g + 6"___7 dg 1dz 2 g6 g7 d---z g7 dz 2 g_ (-_ )a eiP,
(21.2)

- _-- Jr" ---J'_F-----dz3 g_ _7_ dz dz_ az_)

_t d_ e_az') g_ as j

d'G . [__+_(4i_ d_+6_,d_-_i, d'g_ d'gI
dz _ [g_ g_[ dz dz 2 dz 3 dz 4)

6"7 2 dg 2 _ dg d2g 4 dg d3g 3 _ d2g_2_
-g-_(6_ (-_ ) -12. ,,-_ -_z_- -_ --_z_- ' -JZ___' )
6"7"8/ .... dg_3+., dg_2 d2g_+ 6"7"8"9 ( dg)41ei_z

]

(21.3)

(21.4)

__ . _i s 6 ( 4 _3 d2g 62 d3g+5 d4g dSg I
d_C iJ-i---s_ d_oi ---_o -- i_ +
dz s g_ gV -_ dz _ " dz _ dz _ -d_z_)

_o_<__)_+_o____z a__2o__ a_]
dz _ dz -dl-z-fz_)

dz _ dz dz _ dz _ -d-_z_)

+6"7"8(1 _2 0i_(dd__z ) d_g 5)_ 0 ( d_)3-3 _---I0 (dd--_z)_dz _ dzd'---qg-15dd-_z(3 _d2g)

g:tO
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The fifth derivative is now evaluated at the pole Zo.

According to Eq.(21) the values of g and its derivatives at the

pole are

f - 1 - _ In sech z
a

go " -_ o (22)

dzn o

where the subscript o means that the quantities are evaluated at

Zo. The values of g and its derivatives required are thus

go" 1 tanh zo . _ii(e23_I)i/2 (23.1)
a a

dg) sech2zo . e2a (23.2)-_ o 2a 2--_

d2g] 2 sech2zo tanh z o 2i e2a(e2a_l )I/2

dz2 } o 3a 3a

(23.3)

d3g] sech2z° (2 tanh2zo-sech2zo)
-d_z3]o - 2a

e 23 (3e2a_2)
2a

(23.4)

d4g] . 8 (sech2zo tanhazo_2sech4zo tanhzo )

. 8__ie2a(3e23_l) (e23_1)i/2
5a

(23.5)

dSg]
-_z s ] " 3--_(sech2z°tanh4z°- ii sech4zotanh2zo+sech6zo)o 2

4e za

33
-- (15e4a-15e23+2)

(23.6)

I0



For simplification, the following positive real factors of
these derivatives are used

h e - -i go " 1 (e2a_l)i/2 (24.1)
a

dz o 2a

(24.2)

hz - i ( d2gl 2e 2a (e2a_l) 1/2 (24.3)
3a

. _(d3g I e 2a
h_ t --_z_)o 2a

(3e2a-2) (24.4)

h, - i _
[dZ4]o 5___ (3e2a-l)(e2a-l) I/2 (24.5)

_ (d5g I 4e 2a
h5 [-_z 5 ) o 3a

(15e4a-15e2a+2) (24.6)

In terms of these positive real quantities, the fifth derivative of

G evaluated at the pole Zo is

i([dz 5dSG]]o e-"Y°E_h6os+ -_o6(5_,h1_lO_3h2+lO_2h3_5_h,+h5)

+ 6"__7 (lO_3h__30_2hxh2+5 _[4hlh3+3h# ]_5[hlh,+2hZh3])

h_o
(25)

6" 7"8 _2h__30[Jh_h2+5h _ [2h_h3+3h#] )+- (I0

-%

6" 7"8"9 s I

h4o (513h__lOh_h2) + 6" 7-8"9"10ho5 h
+

.j
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Then the Fourier transform is just the product of 2_Bi and the

residue at the pole

s [ Tz Jo (26)

EXCITATION RATE COEFFICIENTS

With the transition probabilities P_b calculated from

Eq.(13.1), the rate coefficients can be determined. Just as done

for vibrational transitions, the head on collisions are assumed to

establish the functional form for the transition probability and

the absolute magnitude of the rate coefficient is obtained by

multiplying the result with a constant cross section So, which

should be the order of 10415 cm 2 for the ground state atoms. For the

excited states this constant is increased by the range of the

hydrogen like outer electron wave function

So
S a - (27)

(!-ea/I) _

where ea is the electronic energy of state a and I is the

ionization energy of the ground state of the atom. The rate

coefficient is obtained by numerical integration over a Boltzmann

distribution of collision energies

kab - _ So f (Sa/So) Pab X e -x dx (28)

Xo

where u is the mean molecular velocity in center of mass

coordinates, x is the dimensionless collision energy in units of

kT, and Xo is the activation energy in these units. Sa/So and Pab

are calculated as functions of the dimensionless collision energy

and the integral is performed numerically by quadrature.

EXAMPLE RESULT FOR AN N-N COLLISION

The relations developed above are now used to calculate the

probability of transition of an N atom in the (3s2P) state to the

(4s2P) state when it is perturbed by a collision with an N atom in

the ('S °) ground state, which is taken to be unchanged in the
collision.

The polarizability of the ground state atom is given by

Eq.(15). The 4S° state has two strong absorption lines at 83336 cm -I

12



and at 88135 cm-I with f numbers of .35 and .13 respectively _4.
These lines are so far from the transition frequency _b

_ab " _b-_a " 104200-86200 - 18000cm -I (29.1)

that the damping factor can be neglected. Then

. e 2 _'_ fi - 3.386 (29 2)
3 _2a_mc2_ _ 2 2a o _i-_

and the dimensionless factor required in Eq.(13.1) is

- 1689
(29.3)

The matrix element H.b is expected to be the order of i0. This

factor is approximated using Slater type screened wave functions

2Z]/2 (3-2Z3r+___Z_r 2) e-% r/3 ( 30. i)
R a - R3o o 9Vrg

Z43/2
-z4r/4 (30.2)R b - R4oo (8-6%r+Z_r2-Z2r3/24)e

32

The effective nuclear charges are adjusted to agree with the

observed energy levels

Z 2 - n 2 (I-E) / (e2/2ao)

Z a - [9(117345-86200)/109571] z/2 - 1.605 (31)

Z b - [16 (117345-104200)/109571] i/2 _ 1,385

To the accuracy of this approximation the transition matrix
element is

H_ - fcos2O sin0 dO f(Rbr2Ra)r2dr
O O

(32.1)
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Hab. I (ZaZb) 3/2 i 16 2 + 2 r 23 144v_ 124- (16Za+I8Z b) r+ (--_-Za+12ZaZb 3Zb)

Za Zb4 2 2z z + 2 2 z,z 3
- (7 ZaZb+ --8-) rZ+ (-9 ZaZb* i----_ )r4 9-12

rSle-Zrdr

(32.2)

where

Z a Z bZ - -- + -- - .881 (32 3)
3 4

Thus

H_ - (-8.123) 2 - 65.98 (33)

Finally the transition probability is a function of collision

energy, which for this particular transition is given by

P_ _ 1"113"105 F_

(Ro/ao) 12

(34)

To evaluate the Fourier transform of Eq.(13.3) the constants

of the repulsive potential of Eq.(9) must be specified. For the

purely repulsive potential that occurs most frequently between

colliding atoms, the constants A = 305 ev and L = .35 A have been

chosen. These constants fit the potential given by Gilmore I_ fairly

well; they are assumed to also approximate the repulsion with the

excited atom except that the size of the cross section is increased

as in Eq.(27). The transition probability of Eq.(34) calculated

for this potential interaction is shown on Fig.(4) as a function of

collision energy. Except at collision energies the order of 30 ev

or larger these probabilities are small compared with unity so that

the small perturbation method is justified at low temperatures.

However, at high temperatures the tail of the Boltzmann

distribution contributes much to the rate coefficient where the

small perturbation method breaks down. To compensate for this the

transition probabilities are limited to unity at collision energies

above 30 ev.

The rate coefficient is obtained by integrating the transition

probability over a Boltzmann distribution of collision energies for

a range of different temperatures. Fig.(5) shows k_ as a function

of temperature between 5000 and 50000°K. These rate coefficients

are considerably smaller than the free electron excitation rates as

expected. The relation for electron collision excitation of the

14



same transition, that is the excitation of N(3s2P) to N(4s2P), is
shown by the dashed line on Fig.(5); Park's expression 6 for this
rate coefficient is

- 4.3 1016 / __ 10000}.14 -2s422/re_ • e cc/mol-sec (35)

The rate coefficients calculated for ground state N atom collision

excitation of this transition are given as a function of

temperature in the following table.

TABLE I. RATE COEFFICIENT FOR N(3s2P) + N('S °) _ N(4s=P) + N('S °)

T,degK k,cc/mol-sec log1_k

5000 1.960 x 10 -2 -1.708

i0000 1.066 x i0 _ 5.028

15000 1.708 x i0" 8.232

20000 1.472 x 10 I° 10.168

25000 2.688 x 1011 11.430

30000 1.940 x 1012 12.288

35000 7.897 x 1012 12.898

40000 2.354 x 1013 13.372

45000 5.544 x 1013 13.744

50000 1.096 x 1014 14.040

This sample calculation illustrates how other transition

reaction rates could be determined by this method. Although the

transition matrix elements are not highly accurate, these are not

the crucial factors that the Fourier transforms are as far as

establishing the correct magnitude of the transition probabilities.

Once the rate coefficients have been determined for all the

important transitions, the relaxation rates can be found from

Eq.(7) using the Master Equation from Eq.(5) to obtain the rate of

change in electronic state energy caused by atom-atom collisions.

CONCLUDING REMARKS

The relaxation times for electronic excitation due to electron

bombardment of atoms has been found to be quite short, so that

electron kinetic temperature T. and the electron excitation

temperature T" should equilibrate quickly whenever electrons are

present. However, once equilibration has been achieved, further

energy to the excited electronic states and to the kinetic energy

of free electrons must be fed in by collisions with heavy particles

that cause vibrational and electronic state transitions.
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The rate coefficients for excitation of electronic states
produced by heavy particle collision have not been well known.
However, a relatively simple semi-classical theory has been
developed here which is analytic up to the final integration over
a Boltzmann distribution of collision energies; this integral can
then be evaluated numerically by quadrature. Once the rate
coefficients have been determined, the relaxation of electronic
excitation energy can be evaluated and compared with the relaxation
rates of vibrational excitation. Then the relative importance of
these two factors, electronic excitation and vibrational excitation
by heavy particle collision, on the transfer of energy to free
electron motion, can be assessed.
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FIG.(1) RELAXATION OF N ATOM ELECTRONICENERGYBY
ELECTRONIMPACT

FIG.(2) RELAXATION OF O ATOMELECTRONICENERGYBY
ELECTRONIMPACT

FIG.(3) EXPONENTIAL COLLISION POTENTIAL PLUS INDUCED
DIPOLE INTERACTION

FIG.(4) PROBABILITY OF ATOMIC N(3s2P) TRANSITION TO
ATOMIC N(4s2P) DUE TO COLLISION WITH ATOMIC N(4S°)

AS A FUNCTION OF COLLISION ENERGY

FIG.(5) RATE COEFFICIENTS AS A FUNCTIONOF TEMPERATURE
FOR ATOMIC N(3s2p) TRANSITION TO ATOMIC N(4s2P)

DUE TO COLLISIONS WITH ELECTRONSAND (4S°)N ATOMS
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FIG. (i) RELAXATION OF N ATOM ELECTRONIC ENERGY BY

ELECTRON IMPACT
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FIG.(2) RELAXATION OF 0 ATOM ELECTRONIC ENERGY BY
'ELECTRON IMPACT
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FIG.(3) EXPONENTIAL COLLISION POTENTIAL PLUS INDUCED

DIPOLE INTERACTION
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FIG. (4) PROBABILITY OF ATOMIC N(3s2P) TRANSITION TO

ATOMIC N(4s2P) DUE TO COLLISION WITH ATOMIC N(4S °)

"AS A FUNCTION OF COLLISION ENERGY




